THE CYTOSKELETON AND CYTOSOL
In this section we will discuss the intracellular components that are not organelles. The cytoskeleton and cytosol are structural elements that help provide the cell with its structure. The cytoskeleton is composed of protein filaments and is found throughout the inside of a eukaryotic cell. The cytosol is the main component of the cytoplasm, the fluid that fills the inside of the cell. The cytoplasm is everything in the cell except for the cytoskeleton and membrane-bound organelles. Both structures, the cytoskeleton and cytosol, are "filler" structures that do not contain essential biological molecules but perform structural functions within a cell.
The Cytosol
The interior of a cell is composed of organelles, the cytoskeleton, and the cytosol. The cytosol often comprises more than 50% of a cell's volume. Beyond providing structural support, the cytosol is the site wherein protein synthesis takes place, and the provides a home for the centrosomes and centrioles. These organelles will be discussed more with the cytoskeleton.
Figure %: Location of the cytosol within a cell.
The Cytoskeleton
The cytoskeleton is similar to the lipid bilayer in that it helps provide the interior structure of the cell the way the lipid bilayer provides the structure of the cell membrane. The cytoskeleton also allows the cell to adapt. Often, a cell will reorganize its intracellular components, leading to a change in its shape. The cytoskeleton is responsible for mediating these changes. By providing "tracks" with its protein filaments, the cytoskeleton allows organelles to move around within the cell. In addition to facilitating intracellular organelle movement, by moving itself the cytoskeleton can move the entire cells in multi-cellular organisms. In this way, the cytoskeleton is involved in intercellular communication.
The cytoskeleton is composed of three different types of protein filaments: actin, microtubules, and intermediate filaments.
Actin
Actin is the main component of actin filaments, which are double-stranded, thin, and flexible structures. They have a diameter of about 5 to 9 nanometers. Actin is the most abundant protein in most eukaryotic cells. Most actin molecules work together to give support and structure to the plasma membrane and are therefore found near the cell membrane.
Microtubules
Microtubules are long, cylindrical structures composed of the protein tubulin and organized around a centrosome, an organelle usually found in the center of the cell near the cell nucleus. Unlike actin molecules, microtubules work separately to provide tracks on which organelles can travel from the center of the cell outward.
Microtubules are much more rigid than actin molecules and have a larger diameter: 25 nanometers. One end of each microtubule is embedded in the centrosome; the microtubule grows outward from there. Microtubules are relatively unstable and go through a process of continuous growth and decay. Centrioles are small arrays of microtubules that are found in the center of a centrosome. Certain proteins will use microtubules as tracks for laying out organelles in a cell.
Intermediate filaments
Intermediate filaments are the final class of proteins that compose the cytoskeleton. These structures are rope-like and fibrous, with a diameter of approximately 10 nanometers. They are not found in all animal cells, but in those in which they are present they form a network surrounding the nucleus often called the nuclear lamina. Other types of intermediate filaments extend through the cytosol. The filaments help to resist stress and increase cellular stability.
Figure %: Organization of actin, microtubules, and intermediate filaments within a cell.
These three types of protein are distinct in their structure and specific function, but all work together to help provide intra-cellular structure. Because they are so diverse, it is very difficult to study the specific functions of the cytoskeletal components.
EUKARYOTIC ORGANELLES: CELL NUCLEUS, MITOCHONDRIA & PEROXISOMES
We will now begin our discussion of intracellular organelles. As we have mentioned, only eukaryotic cells have intracellular sub-divisions, so our discussion will exclude prokaryotic cells. We will also focus on animal cells, since plant cells have a number of further specialized structures. In this section we will discuss the importance of the cell nucleus, mitochondria, peroxisomes, endoplasmic reticulum, golgi apparatus, and lysosome.
The Cell Nucleus
The cell nucleus is one of the largest organelles found in cells and also plays an important biological role. It composes about 10% of the total volume of the cell and is found near the center of eukaryotic cells. Its importance lies in its function as a storage site for DNA, our genetic material. The cell nucleus is composed of two membranes that form a porous nuclear envelope, which allows only select molecules in and out of the cell.
The DNA that is found in the cell nucleus is packaged into structures called chromosomes. Chromosomes contain DNA and proteins and carry all the genetic information of an organism. The nucleus gains support from intermediate filaments that both form the surrounding nuclear lamina and makes direct contact with the endoplasmic reticulum. The nucleus is also the site of DNA and RNA synthesis.
Figure %: Location of the cell nucleus, mitochondria, and peroxisomes in a cell.
Mitochondria
The mitochondria, with its specialized double-membrane structure, generate adenosine triphosphate (ATP), a molecule that provides organisms with energy.
Figure %: Mitochondrial structure
The outer and inner membranes of the mitochondria form two sub-compartments: the internal matrix space and the intermembrane space. Those few proteins found withn the mitochondria are located within the inner membrane. Mitochondria synthesize ATP with energy supplied by the electron transport chain and a process called oxidative phosphorylation.
Peroxisomes
Peroxisomes are single-membrane structures found in all eukaryotic cells. They are small, membrane-bound structures that use molecular oxygen to oxidize organic molecules. The structure is one of the major oxygen utilizing organelles, the other being the mitochondria. Peroxisomes contain oxidative enzymes and other enzymes that help produce and degrade hydrogen peroxide.
Because of their varying enzymatic compositions, peroxisomes are diverse structures. Their main function is to help breakdown fatty acids. They perform specific functions in plant cells, which we will discuss later.
The Endoplasmic Reticulum
The endoplasmic reticulum, or ER, is a very important cellular structure because of its function in protein synthesis and lipid synthesis. For example, the ER is the site of production of all transmembrane proteins. Since nearly all proteins that are secreted from a cell pass through it, the ER is also important in cellular trafficking. In addition to these major roles, the ER plays a role in a number of other biological processes. There are two different types of ER: smooth ER and rough ER (RER).
The rough ER has its name because it is coated with ribosomes, the structures most directly responsible for carrying out protein synthesis. Smooth ER lacks these ribosomes and is more abundant in cells that are specific for lipid synthesis and metabolism.
Figure %: The Endoplasmic Reticulum
In addtion to protein and lipid synthesis, the ER also conducts post-synthesis modifications. One such modification involves the addition of carbohydrate chains to the proteins, though the function of this addition is unknown. Another major modification is called protein folding, whose name is rather self- explanatory. Another role of the ER is to capture calcium for the cell from the cytosol. Finally, the ER can secrete proteins into the cell that are usually destined for the golgi apparatus.
Figure %: The location of the Endoplasmi Reticulum, golgi apparatus, and lysosome in a eukaryotic cell.
The Golgi Apparatus
The golgi apparatus is usually located near the cell nucleus. It is composed of a series of layers called golgi stacks. Proteins from the ER always enter and exit the golgi apparatus from the same location. The cisface of the golgi is where proteins enter. A protein will make its way through the golgi stacks to the other end called the trans face where it is secreted to other parts of the cell.
Figure %: Structure of the Golgi Apparatus
In the golgi apparatus, more carbohydrate chains are added to the protein while other chains are removed. The golgi stacks also sort proteins for secretion. After sorting, the membrane of the golgi buds off, forming secretory vesicles that transport proteins to their specific destination in the cell. A protein's destination is often signaled with a specific amino acid sequence at its end. A protein secretion most often travels back to the ER, to the plasma membrane where it can become a transmembrane protein, or to the next structure we will discuss, the lysosomes.
Lysosomes
Lysosomes are sites of molecular degradation found in all eukaryotic cells. They are small, single-membrane packages of acidic enzymes that digest molecules and are found throughout eukaryotic cells. As such, Lysosomes are a sort of cellular "garbage can," getting rid of cellular debris. Proteins that are not correctly folded or have significant mutations can be secreted to the lysosomes and be degraded instead of taking up space in the cell. Detritus proteins and other molecules can find their way to the lysosome in a variey of ways.
Molecules from outside a cell can be taken in through a process called endocytosis. In this process, the cell membrane invaginates, forming a vesicle containing the transported molecule that will eventually reach a lysosome. The reverse of endocytosis is exocytosis. In this process, molecules within a cell are secreted into an endosome, a membrane-bound structure that delivers the molecule to the lysosome. After reaching the lysosomes, the molecules are secreted from a cell in membrane vesicles. Proteins secreted by the golgi apparatus into the plasma membrane can also be taken back to the lysosome by endosomes.